Identification of novel mutations in ACT1 and SLA2 that suppress the actin-cable-overproducing phenotype caused by overexpression of a dominant active form of Bni1p in Saccharomyces cerevisiae.

نویسندگان

  • Shiro Yoshiuchi
  • Takaharu Yamamoto
  • Hiroshi Sakane
  • Jun Kadota
  • Junko Mochida
  • Masahiro Asaka
  • Kazuma Tanaka
چکیده

A formin Bni1p nucleates actin to assemble actin cables, which guide the polarized transport of secretory vesicles in budding yeast. We identified mutations that suppressed both the lethality and the excessive actin cable formation caused by overexpression of a truncated Bni1p (BNI1DeltaN). Two recessive mutations, act1-301 in the actin gene and sla2-82 in a gene involved in cortical actin patch assembly, were identified. The isolation of sla2-82 was unexpected, because cortical actin patches are required for the internalization step of endocytosis. Both act1-301 and sla2-82 exhibited synthetic growth defects with bni1Delta. act1-301, which resulted in an E117K substitution, interacted genetically with mutations in profilin (PFY1) and BUD6, suggesting that Act1-301p was not fully functional in formin-mediated polymerization. sla2-82 also interacted genetically with genes involved in actin cable assembly. Some experiments, however, suggested that the effects of sla2-82 were caused by depletion of actin monomers, because the temperature-sensitive growth phenotype of the bni1Delta sla2-82 mutant was suppressed by increased expression of ACT1. The isolation of suppressors of the BNI1DeltaN phenotype may provide a useful system for identification of actin amino-acid residues that are important for formin-mediated actin polymerization and mutations that affect the availability of actin monomers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bni1p regulates microtubule-dependent nuclear migration through the actin cytoskeleton in Saccharomyces cerevisiae.

The RHO1 gene encodes a yeast homolog of the mammalian RhoA protein. Rho1p is localized to the growth sites and is required for bud formation. We have recently shown that Bni1p is one of the potential downstream target molecules of Rho1p. The BNI1 gene is implicated in cytokinesis and the establishment of cell polarity in Saccharomyces cerevisiae but is not essential for cell viability. In this...

متن کامل

Null alleles of SAC7 suppress temperature-sensitive actin mutations in Saccharomyces cerevisiae.

Extragenic suppressors of a new temperature-sensitive mutation (act1-4) in the actin gene of Saccharomyces cerevisiae were isolated in an attempt to identify genes whose products interact directly with actin. One suppressor with a cold-sensitive growth phenotype defined the new gene, SAC7, which was mapped, cloned, sequenced, and disrupted. Genetic analysis of strains that are disrupted for SAC...

متن کامل

Osmotic stress and the yeast cytoskeleton: phenotype-specific suppression of an actin mutation

In the yeast Saccharomyces cerevisiae, actin filaments function to direct cell growth to the emerging bud. Yeast has a single essential actin gene, ACT1. Diploid cells containing a single copy of ACT1 are osmosensitive (Osms), i.e., they fail to grow in high osmolarity media (D. Shortle, unpublished observations cited by Novick, P., and D. Botstein. 1985. Cell. 40:415-426). This phenotype sugge...

متن کامل

A role for GEA1 and GEA2 in the organization of the actin cytoskeleton in Saccharomyces cerevisiae.

Profilin is an actin monomer-binding protein implicated in the polymerization of actin filaments. In the budding yeast Saccharomyces cerevisiae, the pfy1-111 rho2delta double mutant has severe growth and actin cytoskeletal defects. The GEA1 and GEA2 genes, which code for paralog guanosine exchange factors for Arf proteins, were identified as multicopy suppressors of the mutant phenotype. These ...

متن کامل

Multiple functions for actin during filamentous growth of Saccharomyces cerevisiae.

Saccharomyces cerevisiae is dimorphic and switches from a yeast form to a pseudohyphal (PH) form when starved for nitrogen. PH cells are elongated, bud in a unipolar manner, and invade the agar substrate. We assessed the requirements for actin in mediating the dramatic morphogenetic events that accompany the transition to PH growth. Twelve "alanine scan" alleles of the single yeast actin gene (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 173 2  شماره 

صفحات  -

تاریخ انتشار 2006